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Abstract. Accurate, automated lesion detection in Computed Tomog-
raphy (CT) is an important yet challenging task due to the large variation
of lesion types, sizes, locations and appearances. Recent work on CT le-
sion detection employs two-stage region proposal based methods trained
with centroid or bounding-box annotations. We propose a highly accu-
rate and efficient one-stage lesion detector, by re-designing a RetinaNet
to meet the particular challenges in medical imaging. Specifically, we op-
timize the anchor configurations using a differential evolution search al-
gorithm. For training, we leverage the response evaluation criteria in solid
tumors (RECIST) annotation which are measured in clinical routine. We
incorporate dense masks from weak RECIST labels, obtained automat-
ically using GrabCut, into the training objective, which in combination
with other advancements yields new state-of-the-art performance. We
evaluate our method on the public DeepLesion benchmark, consisting of
32,735 lesions across the body. Our one-stage detector achieves a sensitiv-
ity of 90.77% at 4 false positives per image, significantly outperforming
the best reported methods by over 5%.

1 Introduction

Detection and localization of abnormalities in Computed Tomography (CT)
scans is a critical routine task for radiologists. Accurate, automated detection
of suspicious regions could greatly support screening, diagnosis and monitoring
of disease progression. Most previous work focuses on a specific type of lesion
within a relatively constrained (anatomical) context, such as lymph nodes, lung
nodules and brain microbleeds. Recently, Yan et al. [15] pioneered the study of
universal lesion detection and introduced today’s largest data repository, i.e., the
DeepLesion dataset. Detecting diverse types of lesions across the body using one
single model is very challenging due to the large variation of lesion types, sizes,
locations and heterogeneous appearances. For example, DeepLesion consists of
eight types of lesions with diameters ranging from 0.21 to 342.5 mm. In addition,
the lesions may appear with limited contrast compared to nearby normal tissue,
which further increases the difficulty of detecting subtle signs of disease.
Automated lesion detection has been central in medical image computing. Re-
cent work employs two-stage methods with candidate proposal and false positive
reduction steps. State-of-the-art performance on the DeepLesion benchmark has
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been achieved by Yan et al. [13]. They propose a two-stage, region-based method
called 3DCE to effectively incorporate 3D context into 2D regional CNNs. Their
method achieves a sensitivity of 85.65% at 4 false positives per image, outper-
forming the popular detection method of Faster R-CNN [7] on the same dataset.
However, their detection sensitivity for small lesions is much lower, which is an
important limitation in the critical context of detecting early signs of diseases.

Some recent work take advantage of mask information for improving detec-
tion accuracy. Jaeger et al. [4] propose a Retina U-Net, showing that aggregating
pixel-wise supervision to train the detector is helpful. Their method shows ef-
fectiveness in two scenarios, i.e., lung lesions in CT and breast lesions in MRI.
As pixel-wise annotations are tedious and expensive to obtain, Tang et al. [12]
generate pseudo masks by fitting ellipses based on the response evaluation crite-
ria in solid tumors (RECIST) [2] diameters. Using a 2D Mask R-CNN [3] with
generated lesion masks and other strategies, [12] achieves a sensitivity of 84.38%
at 4 false positives per image on DeepLesion dataset. Their pseudo-mask genera-
tion procedure relies heavily on the assumption of elliptical geometry of lesions,
which may yield imprecise masks limiting the efficacy of dense supervision.

We propose a one-stage detector which directly localizes lesions without the
need of candidate region proposals. To meet the specific challenge of detecting
small lesions, we revisit the RetinaNet [6] and optimize the feature pyramid
scheme and anchor configuration by employing a differential evolution search al-
gorithm. To enhance the model, we leverage high-quality dense masks obtained
automatically from weak RECIST labels using GrabCut [8]. Incorporating these
generated masks into pixel-wise supervision shows great benefit for training the
detector. In addition, we make use of the coherence between lesion mask predic-
tions and bounding-box regressions to calibrate the detector outputs. We fur-
ther investigate recent strategies for boosting the detection performance, such
as integrating attention mechanism into our feature pyramids. We evaluate the
contributions of each part using the DeepLesion benchmark, achieving a new
state-of-the-art sensitivity of 90.77% at 4 false positives per image, significantly
outperforming the currently best performing method 3DCE [13] by over 5%.

2 Improving RetinaNet

An overview of our proposed one-stage lesion detector is illustrated in Fig 1 (a).
We first describe the model design before elaborating on how we obtain dense
masks from weak RECIST labels and incorporate them into training process. We
then show the attention mechanism for further improving detection performance.

2.1 Model Design with Optimized Anchor Configuration

The backbone of our approach is a RetinaNet [6], a recent one-stage method
for object detection. The use of a focal loss addresses the common problem of
class imbalance in detection tasks. The feature pyramids and lateral connections
with a top-down architecture [5] are adopted for detecting objects at different
scales. This is an important difference with methods such as 3DCE [13], since
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Fig. 1: (a) Overview of our improved RetinaNet. (b) Automatic dense mask gen-
eration from weak RECIST diameters using GrabCut [8].

the feature pyramids can effectively capture information about lesions of varying
sizes including very small ones. Our specific network follows the structure of
VGG-19 [10]. We also explored ResNet-50 as used originally, but its performance
was worse on DeepLesion, which is in line with results reported in [14].

The anchor configuration is crucial for the detector, and we find the default
anchor sizes (32, 64, 128, 256 and 512), aspect ratios (1:2, 1:1 and 2:1) and scales
(25, 23 and 23) turn out to be ineffective for detecting lesions of small size and
large ratios. We employ a differential evolution search algorithm [11] to optimize
ratios and scales of anchors on the validation set. This algorithm iteratively im-
proves a population of candidate solutions with regard to an objective function.
New solutions are created by combining existing ones. We aim to find the best
anchor settings for 3 scales and 5 ratios. The objective is to maximise the overlap
between the lesion bounding-box and the best anchor on the validation dataset.
We fix one ratio as 1:1, and define other ratios as reciprocal pairs (i.e., if one ratio
is 1:+ then another is :1). Thus, we need to optimise only five variables, i.e,
two ratio pairs and three scales. When initialising the population of candidate
solutions, all scales are bounded to a range of [0.4,1.6] and the two ratios are
respectively bounded in [1, 2] and [2,4]. We obtain optimal scales as 0.425, 0.540
and 0.680, and ratios of 3.27:1, 1.78:1, 1:1, 1:1.78, 1:3.27, which fits objects of
small size and large ratios. Anchor sizes remain as (32, 64, 128, 256 and 512).
These optimised configurations are then used for training the detector.

2.2 Dense Mask Supervision from Weak RECIST Labels

Although annotations of bounding-boxes are relatively easy to obtain, there are
other “weak” labels which are routinely generated in clinical practice, such as
RECIST diameters. RECIST is used to track lesion growth, and consists of a
pair of diameters to measure the lesion extent (cf. Fig. 1(b)). To leverage this
highly valuable information, we automatically generate dense lesion masks from
RECIST labels (provided in the DeepLesion dataset) using GrabCut [8]. We ini-
tialize a trimap into background (Ts), foreground (7%) and unclear (Ty) pixels.
A segmentation mask is generated based on iterative graph-cuts. Initialization
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can largely affect the final result, as it defines the Gaussian mixture models
capturing the foreground and background intensity distributions.

Cai et al. [1] previously adopt GrabCut to initialise lesion masks of the
RECIST-slice for the task of weakly-supervised lesion segmentation in 3D. Their
T'p is set as pixels outside the bounding-box defined by RECIST axes, and Tr is
obtained by dilation of the diameters. Such an initialisation may be sub-optimal,
specifically, for large lesions, where a considerable number of lesion pixels, which
are quite certain to belong to foreground, are outside the dilation and omitted
in Tp. For small lesions, the dilation has the risk of hard-labelling background
pixels into T, which cannot be corrected in the optimization.

To achieve a higher-quality masks using GrabCut, we propose a new strategy,
as illustrated in Fig. 1(b). We build a quadrilateral by consecutively connecting
the four endpoints of the RECIST diameters. A pixel is labelled as foreground
if it falls inside the quadrilateral. As most lesions show convex outlines, this is
a simple yet reliable strategy. With the annotation of bounding-box provided in
the dataset, the pixels outside the box are hard-labelled as background Tz. All
remaining pixels are assigned to Ty and estimated through GrabCut.

To exploit these generated dense labels, we add two more upsampling layers
(connecting to P2 and P1) and a segmentation prediction layer to the detector.
Skip connections are employed by fusing features obtained from C1 (viaa 1 x 1
convolution) and input (via two 3 x 3 convolutions), as shown in Fig. 1(a).
To retain sufficient resolution of feature maps for small lesions, we shift the
sub-network operation (i.e., classification and regression) to pyramid levels of
P2-P6 from P3-P7. Using dense supervision to help detection task shares the
idea with Retina U-Net [4], where we avoid the need for tedious labelling, as our
dense masks are automatically generated from labels that are already recorded
in clinical routine. Additionally, we leverage the IoU between a bounding-box
around the predicted segmentation mask and the directly regressed box (yellow
sub-networks in Fig. 1), to calibrate the prediction probability p = p x (14 IoU)
of a lesion. High coherence between segmentation and detection results indicates
high confidence in lesion prediction, and benefits sensitivity at low FP rates.

2.3 Attention Mechanism for Gated Feature Fusion

A recent attention gate (AG) model proposed by Schlemper et al. [9] learns to
focus on target structures by producing an attention map. According to this
work, this may be beneficial for small, varying structures. We explore AGs to
filter feature responses propagated through skip connections and use features
upsampled from coarser scale as the gating signal. The AG module only uses
1x1 convolutions and produces a single attention map, which makes it compu-
tationally light-weight. The output of AG is the element-wise multiplication of
the attention map and the feature map from the skip connection.

Training: We follow the loss used in original RetinaNet for detection, and our
segmentation uses focal loss with cross-entropy. We employ the Adam optimizer
with a learning rate of 10~% which is reduced during training by a factor of 10
when the mean average precision (mAP) has not improved for 2 consecutive
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epochs. The batch size is 4 during training. To reduce overfitting, early stopping
is used if the mAP has not improved for 4 consecutive epochs on the validation
set. We use an NVIDIA GeForce GTX 1080 for training and testing.

3 Experiments

3.1 Dataset, Pre-Processing, and Augmentation

The public DeepLesion dataset [15] consists of 32,120 axial CT slices from 10,594
studies of 4,427 unique patients. There are 1~ 3 lesions in each slice, adding up
to 32,735 lesions altogether. For each lesion, there is usually 30mm of extra slices
above and below the key slice to provide contextual information. In most cases,
the slices have 1 or 5 mm thickness, but this varies with some being 0.625 or 2
mm. The 2D bounding-boxes and RECIST diameters for lesions are annotated
on the key slice. The dataset covers a wide range of lesions from lung, liver,
mediastinum (mainly lymph nodes), kidney, pelvis, bone, abdomen and soft
tissue. Sizes vary significantly with diameters ranging from 0.21 to 342.5 mm.

We perform lightweight pre-processing where images are resized into 512x512
pixels, resulting in a voxel-spacing between 0.175 and 0.977 mm with a mean of
0.802 mm. The Hounsfield units (HU) are clipped into the range of [—1024, 1050].
We normalize the intensities to the range of [—1, 1] as input to the network. In our
experiments, we use three adjacent slices after resampling to 2 mm thickness.
In rare cases where the neighboring slice of the lesion slice is not provided,
we duplicate the lesion slice to fill the missing input channels. We use data
augmentation where images are flipped in horizontal and vertical directions with
50% chance. We also use random affine transformations with rotation/shearing
up to 0.1 radians, and scaling/translation up to 10% of the image size.

3.2 Detection Results on DeepLesion Benchmark

The DeepLesion dataset is provided with splits into 70% for training, 15% for
validation, and 15% for testing. Thus, our results can be directly compared with
numbers reported in the literature. The current best results have been achieved
by Yan et al. [13] and Tang et al. [12]. We also quote their provided baseline
performance using popular detection methods, i.e., Faster R-CNN [7] (reported
n [13]) and Mask R-CNN [3] (reported in [12]). We further provide the results
of our own baseline RetinaNet [6] using its default configuration. A predicted
box is regarded as correct if its IoU with a ground truth box is larger than 0.5.

In Table 1, we present the lesion detection sensitivities at different false posi-
tives (FP) per image. Our improved RetinaNet consistently outperforms existing
methods across all FP rates. Specifically, sensitivity at 4 FPs, which is commonly
reported in the literature, we achieve a sensitivity of 90.77%, which is a 5.12%
improvement over 3DCE [13] and 6.39% over ULDor [12]. The free-response re-
ceiver operating characteristics (FROC) curves of different methods are shown
on the left in Fig. 2. We observe that optimized networks for lesion detection are
generally better than out-of-the-box detectors, such as Faster R-CNN, Mask R-
CNN and RetinaNet. When comparing sensitivity at low FP rates, our improved
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Fig.2: Left: FROC curves for our improved RetinaNet variants and baselines
on DeepLesion dataset. Right: Per lesion size results compared to 3DCE [13].

Table 1: Detection performance of different methods and our ablation study.

Methods ‘ 0.5 1 2 4 8 16 ‘ runtime
Faster R-CNN [7] 56.90 67.26 75.57 81.62 85.83 88.74 | 32 ms
Mask R-CNN (3] 39.82 52.66 65.58 T77.73 85.54 91.80 -

ULDor (Tang et al. [12])| 52.86 64.80 74.84 84.38 87.17 91.80 -
3DCE (Yan et al. [13]) | 62.48 73.37 80.70 85.65 89.09 91.06 | 114 ms

original RetinaNet [6] | 45.80 54.17 62.50 69.80 75.34 79.48 | 28 ms
+ anchor optimization | 64.82 74.98 82.29 87.87 92.20 94.90 | 31 ms
+ dense supervision 70.24 78.28 85.10 90.39 93.81 96.01 | 39 ms
+ attention gate 72.15 80.07 86.40 90.77 94.09 96.32| 41 ms

models perform much better than others, indicating the benefit of task-specific
optimization and incorporation of additional mask information.

The sensitivity for detecting different sizes of lesions at 4 FPs are shown
on the right in Fig. 2. We divide the lesions into three size groups according
to the diameter, following [13] for direct comparison. For small lesions with
diameters less than 10 mm, our sensitivity is 88.35% compared to 80% for 3DCE.
Using a feature pyramid to retain responses from small lesions together with
dense supervision with focal loss seems beneficial for detecting subtle signs of
disease. While 3DCE uses richer 3D context, this seems less helpful for small,
local structures. Our model works well across all lesion sizes where we improve
sensitivity from 87% to 91.73% for lesions of 10 ~ 30 mm, and from 84% to
93.02% for lesions larger than 30 mm when compared to 3DCE.

We also record average inference time for each image during testing, as listed
in Table 1. All the detection results are obtained using a single network without
model ensemble nor test augmentation. Our one-stage detector is highly efficient
eliminating the need of generating lesion proposals. The integration of dense su-
pervision and attention mechanism has minimal computational overhead, taking
about 41 ms for each image. Runtimes are reported for 3DCE and Faster R-CNN
n [13], but a comparison is only indicative due to different GPUs being used.
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Fig.3: Visual results for lesion detection at 0.5 FP rate using our improved
RetinaNet. The first three columns show different sizes from small to large. The
right column shows heatmaps from the segmentation layer overlaid on detections.
Yellow boxes are ground truth, green are true positives, red are false positives.
Last row shows intriguing failure cases with possibly incorrect ground truth.

3.3 Contribution of Individual Improvements

We investigate the individual impact of the proposed additions leading to our
final improved RetinaNet. In an ablation study, we first evaluate the original
RetinaNet [6] with default settings, then incrementally add our improvements,
i.e., automatic anchor optimization, dense supervision using lesion masks from
weak labels, and attention mechanism. Table 1 and Fig. 2 (left) summarizes these
results. The original RetinaNet with default anchor configuration is performing
poorly on the lesion detection task, indicating that out-of-the-box approaches
from computer vision are sub-optimal. Remarkably, after employing the auto-
matic search algorithm to optimize the anchor configuration, the simple Reti-
naNet already outperforms previous state-of-the-art. The sensitivity at 0.5 FP
is 2.34% higher than 3DCE and 11.96% higher than ULDor.

Adding dense supervision with segmentation masks generated from RECIST
diameters significantly boosts detection sensitivity across all FP rates, with
5.42% improvement at 0.5 FP. The pixel-wise supervision adds an important
training signal, providing more precise localization information in addition to
bounding-boxes. Consistency between bounding-box regression and dense clas-
sification helps to reduce false positives. Finally, adding an attention mechanism
further improves the performance, achieving a sensitivity of 90.77% at 4 FPs,
with an improvement of almost 10% at 0.5 FP over the best reported results.
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Visual examples of detected lesions on test images are shown in Figs. 3 and 4.
Probability threshold is set to 0.3 yielding 0.5 FP per image. Lesions of various
size, appearance and type are localized accurately. Segmentation masks look
sensible, indicating good quality of the automatically generated dense labels for
training.

4 Conclusion

Our improved RetinaNet shows impressive performance on CT lesion detection
outperforming state-of-the-art by a significant margin. Interestingly, we could
show that by task-specific optimization of an out-of-the-box detector we already
achieve results superior than the best reported in the literature. Exploitation of
clinically available RECIST annotations bears great promise as large amounts
of such training data should be available in many hospitals. With a sensitivity of
about 91% at 4 FPs per image, our system may reach clinical readiness. Future
work will focus on new applications such as whole-body MRI in oncology.
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Fig. 4: More visual results for lesion detection at 0.5 FP rate using our improved
RetinaNet. The rows correspond to bone, abdomen, mediastinum, liver, lung,
kidney, soft tissue, and pelvis lesions, respectively. Each row contains examples
of lesions of different sizes ordered from smallest to largest. Yellow boxes are
ground truth, green are true positives, red are false positives.
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